Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 120, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369495

RESUMO

BACKGROUND: Plants have acquired a repertoire of mechanisms to combat biotic stressors, which may vary depending on the feeding strategies of herbivores and the plant species. Hormonal regulation crucially modulates this malleable defense response. Jasmonic acid (JA) and salicylic acid (SA) stand out as pivotal regulators of defense, while other hormones like abscisic acid (ABA), ethylene (ET), gibberellic acid (GA) or auxin also play a role in modulating plant-pest interactions. The plant defense response has been described to elicit effects in distal tissues, whereby aboveground herbivory can influence belowground response, and vice versa. This impact on distal tissues may be contingent upon the feeding guild, even affecting both the recovery of infested tissues and those that have not suffered active infestation. RESULTS: To study how phytophagous with distinct feeding strategies may differently trigger the plant defense response during and after infestation in both infested and distal tissues, Arabidopsis thaliana L. rosettes were infested separately with the chewing herbivore Pieris brassicae L. and the piercing-sucker Tetranychus urticae Koch. Moderate infestation conditions were selected for both pests, though no quantitative control of damage levels was carried out. Feeding mode did distinctly influence the transcriptomic response of the plant under these conditions. Though overall affected processes were similar under either infestation, their magnitude differed significantly. Plants infested with P. brassicae exhibited a short-term response, involving stress-related genes, JA and ABA regulation and suppressing growth-related genes. In contrast, T. urticae elicited a longer transcriptomic response in plants, albeit with a lower degree of differential expression, in particular influencing SA regulation. These distinct defense responses transcended beyond infestation and through the roots, where hormonal response, flavonoid regulation or cell wall reorganization were differentially affected. CONCLUSION: These outcomes confirm that the existent divergent transcriptomic responses elicited by herbivores employing distinct feeding strategies possess the capacity to extend beyond infestation and even affect tissues that have not been directly infested. This remarks the importance of considering the entire plant's response to localized biotic stresses.


Assuntos
Arabidopsis , Borboletas , Animais , Transcriptoma , Herbivoria/fisiologia , Mastigação , Borboletas/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ciclopentanos/metabolismo
2.
Microorganisms ; 11(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985389

RESUMO

Pathogenic microorganisms, including fungi, oomycetes, bacteria, viruses, and viroids, constitute a serious threat to agriculture worldwide [...].

4.
Front Plant Sci ; 13: 932288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991403

RESUMO

Brassicaceae family includes an important group of plants of great scientific interest, e.g., the model plant Arabidopsis thaliana, and of economic interest, such as crops of the genus Brassica (Brassica oleracea, Brassica napus, Brassica rapa, etc.). This group of plants is characterized by the synthesis and accumulation in their tissues of secondary metabolites called glucosinolates (GSLs), sulfur-containing compounds mainly involved in plant defense against pathogens and pests. Brassicaceae plants are among the 30% of plant species that cannot establish optimal associations with mycorrhizal hosts (together with other plant families such as Proteaceae, Chenopodiaceae, and Caryophyllaceae), and GSLs could be involved in this evolutionary process of non-interaction. However, this group of plants can establish beneficial interactions with endophytic fungi, which requires a reduction of defensive responses by the host plant and/or an evasion, tolerance, or suppression of plant defenses by the fungus. Although much remains to be known about the mechanisms involved in the Brassicaceae-endophyte fungal interaction, several cases have been described, in which the fungi need to interfere with the GSL synthesis and hydrolysis in the host plant, or even directly degrade GSLs before they are hydrolyzed to antifungal isothiocyanates. Once the Brassicaceae-endophyte fungus symbiosis is formed, the host plant can obtain important benefits from an agricultural point of view, such as plant growth promotion and increase in yield and quality, increased tolerance to abiotic stresses, and direct and indirect control of plant pests and diseases. This review compiles the studies on the interaction between endophytic fungi and Brassicaceae plants, discussing the mechanisms involved in the success of the symbiosis, together with the benefits obtained by these plants. Due to their unique characteristics, the family Brassicaceae can be seen as a fruitful source of novel beneficial endophytes with applications to crops, as well as to generate new models of study that allow us to better understand the interactions of these amazing fungi with plants.

5.
Mol Plant Microbe Interact ; 34(6): 576-586, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33522842

RESUMO

This article is part of the Top 10 Unanswered Questions in MPMI invited review series.We consider the state of knowledge on pathogen evolution of novel virulence activities, broadly defined as anything that increases pathogen fitness with the consequence of causing disease in either the qualitative or quantitative senses, including adaptation of pathogens to host immunity and physiology, host species, genotypes, or tissues, or the environment. The evolution of novel virulence activities as an adaptive trait is based on the selection exerted by hosts on variants that have been generated de novo or arrived from elsewhere. In addition, the biotic and abiotic environment a pathogen experiences beyond the host may influence pathogen virulence activities. We consider host-pathogen evolution, host range expansion, and external factors that can mediate pathogen evolution. We then discuss the mechanisms by which pathogens generate and recombine the genetic variation that leads to novel virulence activities, including DNA point mutation, transposable element activity, gene duplication and neofunctionalization, and genetic exchange. In summary, if there is an (epi)genetic mechanism that can create variation in the genome, it will be used by pathogens to evolve virulence factors. Our knowledge of virulence evolution has been biased by pathogen evolution in response to major gene resistance, leaving other virulence activities underexplored. Understanding the key driving forces that give rise to novel virulence activities and the integration of evolutionary concepts and methods with mechanistic research on plant-microbe interactions can help inform crop protection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Adaptação Fisiológica , Interações Hospedeiro-Patógeno , Fenótipo , Virulência
6.
Mol Plant Microbe Interact ; 33(11): 1299-1314, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32720872

RESUMO

The fungal genus Plectosphaerella comprises species and strains with different lifestyles on plants, such as P. cucumerina, which has served as model for the characterization of Arabidopsis thaliana basal and nonhost resistance to necrotrophic fungi. We have sequenced, annotated, and compared the genomes and transcriptomes of three Plectosphaerella strains with different lifestyles on A. thaliana, namely, PcBMM, a natural pathogen of wild-type plants (Col-0), Pc2127, a nonpathogenic strain on Col-0 but pathogenic on the immunocompromised cyp79B2 cyp79B3 mutant, and P0831, which was isolated from a natural population of A. thaliana and is shown here to be nonpathogenic and to grow epiphytically on Col-0 and cyp79B2 cyp79B3 plants. The genomes of these Plectosphaerella strains are very similar and do not differ in the number of genes with pathogenesis-related functions, with the exception of secreted carbohydrate-active enzymes (CAZymes), which are up to five times more abundant in the pathogenic strain PcBMM. Analysis of the fungal transcriptomes in inoculated Col-0 and cyp79B2 cyp79B3 plants at initial colonization stages confirm the key role of secreted CAZymes in the necrotrophic interaction, since PcBMM expresses more genes encoding secreted CAZymes than Pc2127 and P0831. We also show that P0831 epiphytic growth on A. thaliana involves the transcription of specific repertoires of fungal genes, which might be necessary for epiphytic growth adaptation. Overall, these results suggest that in-planta expression of specific sets of fungal genes at early stages of colonization determine the diverse lifestyles and pathogenicity of Plectosphaerella strains.


Assuntos
Arabidopsis/microbiologia , Ascomicetos , Genes Fúngicos , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/patogenicidade
7.
Nat Ecol Evol ; 4(4): 568-577, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32152533

RESUMO

The long-term coevolution of hosts and pathogens in their environment forms a complex web of multi-scale interactions. Understanding how environmental heterogeneity affects the structure of host-pathogen networks is a prerequisite for predicting disease dynamics and emergence. Although nestedness is common in ecological networks, and theory suggests that nested ecosystems are less prone to dynamic instability, why nestedness varies in time and space is not fully understood. Many studies have been limited by a focus on single habitats and the absence of a link between spatial variation and structural heterogeneity such as nestedness and modularity. Here we propose a neutral model for the evolution of host-pathogen networks in multiple habitats. In contrast to previous studies, our study proposes that local modularity can coexist with global nestedness, and shows that real ecosystems are found in a continuum between nested-modular and nested networks driven by intraspecific competition. Nestedness depends on neutral mechanisms of community assembly, whereas modularity is contingent on local adaptation and competition. The structural pattern may change spatially and temporally but remains stable over evolutionary timescales. We validate our theoretical predictions with a longitudinal study of plant-virus interactions in a heterogeneous agricultural landscape.


Assuntos
Ecossistema , Infecções , Humanos , Estudos Longitudinais
8.
Plants (Basel) ; 9(2)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079121

RESUMO

Nitrogen (N) is probably the most important macronutrient and its scarcity limits plant growth, development and fitness. N starvation response has been largely studied by transcriptomic analyses, but little is known about the role of alternative polyadenylation (APA) in such response. In this work, we show that N starvation modifies poly(A) usage in a large number of transcripts, some of them mediated by FIP1, a component of the polyadenylation machinery. Interestingly, the number of mRNAs isoforms with poly(A) tags located in protein-coding regions or 5'-UTRs significantly increases in response to N starvation. The set of genes affected by APA in response to N deficiency is enriched in N-metabolism, oxidation-reduction processes, response to stresses, and hormone responses, among others. A hormone profile analysis shows that the levels of salicylic acid (SA), a phytohormone that reduces nitrate accumulation and root growth, increase significantly upon N starvation. Meta-analyses of APA-affected and fip1-2-deregulated genes indicate a connection between the nitrogen starvation response and salicylic acid (SA) signaling. Genetic analyses show that SA may be important for preventing the overgrowth of the root system in low N environments. This work provides new insights on how plants interconnect different pathways, such as defense-related hormonal signaling and the regulation of genomic information by APA, to fine-tune the response to low N availability.

9.
Phytopathology ; 109(6): 1003-1010, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30540552

RESUMO

Multiple virus infections affect the competence of host plants to transmit disease. The effects of coinfection on transmission are expected to produce ecologically complex pathogen and host-pathogen interactions. However, the prediction of disease risk will rely on untangling nonrandom from random patterns of infection to identify underlying processes that drive these interactions. Are the spatial distributions of infections in complex multispecies systems random or not? For the first time, we use an empirical evaluation of this basic but nontrivial question to test the hypothesis that coinfection contributes to (i) nonrandom ecological interactions between hosts and viruses and (ii) structuring infection distributions. We use a novel approach that decomposed the ecological interactions of 11 generalist viruses in 47 host species in four habitats of an agroecosystem into single-infection and coinfection "modes." Then, we relate ecological structuring in infection networks to the distribution of infection using generalized regression models. The network analyses of coinfection showed that virus-host interactions occurred more often than expected at random in one of the four habitats, Edge. A pattern of specific interactions was shared between Edge and the ecosystem, indicating scale invariance. The regression modeling also showed that the plant community characteristics of Edge were unique in explaining infection distributions. The results showed that the spatial distribution of infection at the ecosystem level was not only a species-specific phenomenon but also, strongly structured by specific virus-virus and host-virus interactions. The evidence of scale invariance and the special role of Edge as a reservoir suggest that ecological interactions were less strongly structured by community differences among habitats than by wider-scale processes and traits underlying the interactions. Addressing whether reservoir communities significantly contribute to epidemiological processes at the ecosystem scale is a promising avenue for future research.


Assuntos
Coinfecção , Doenças das Plantas/microbiologia , Vírus , Ecossistema , Humanos
10.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263286

RESUMO

Processes that generate the distribution of pathogens and their interactions with hosts are not insensitive to changes in spatial scale. Spatial scales and species traits are often selected intentionally, based on practical considerations, ignoring biases that the scale and type of observation may introduce. Specifically, these biases might change the interpretation of disease-diversity relationships that are reported as either 'dilution' or 'amplification' effects. Here, we combine field data of a host-pathogen community with empirical models to test the effects that (i) spatial scale and (ii) host range have on the relationship between plant-virus infection prevalence and diversity. We show that prevalence-diversity relationships are scale-dependent and can produce opposite effects associated with different habitats at sub-ecosystem scales. The total number of host species of each virus reflected generalism at the ecosystem scale. However, plasticity in host range resembled habitat-specific specialization and also changed model predictions. We show that habitat heterogeneity, ignored at larger (ecosystem) spatial scales, influences pathogen distributions. Hence, understanding disease distributions and the evolution of pathogens requires reconciling specific hypotheses of the study with an appropriate spatial scale, or scales, and consideration of traits, such as host range, that might strongly contribute to biotic interactions.


Assuntos
Ecossistema , Interações Hospedeiro-Patógeno , Doenças das Plantas , Vírus de Plantas/fisiologia , Plantas/virologia , Especificidade de Hospedeiro , Modelos Biológicos
12.
Nat Commun ; 7: 11362, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27150427

RESUMO

The sessile nature of plants forced them to evolve mechanisms to prioritize their responses to simultaneous stresses, including colonization by microbes or nutrient starvation. Here, we compare the genomes of a beneficial root endophyte, Colletotrichum tofieldiae and its pathogenic relative C. incanum, and examine the transcriptomes of both fungi and their plant host Arabidopsis during phosphate starvation. Although the two species diverged only 8.8 million years ago and have similar gene arsenals, we identify genomic signatures indicative of an evolutionary transition from pathogenic to beneficial lifestyles, including a narrowed repertoire of secreted effector proteins, expanded families of chitin-binding and secondary metabolism-related proteins, and limited activation of pathogenicity-related genes in planta. We show that beneficial responses are prioritized in C. tofieldiae-colonized roots under phosphate-deficient conditions, whereas defense responses are activated under phosphate-sufficient conditions. These immune responses are retained in phosphate-starved roots colonized by pathogenic C. incanum, illustrating the ability of plants to maximize survival in response to conflicting stresses.


Assuntos
Arabidopsis/metabolismo , Colletotrichum/metabolismo , Endófitos/metabolismo , Fosfatos/deficiência , Raízes de Plantas/metabolismo , Arabidopsis/imunologia , Quitina/metabolismo , Colletotrichum/genética , Endófitos/genética , Genoma Fúngico/genética , Inanição , Simbiose/imunologia , Simbiose/fisiologia
13.
Cell ; 165(2): 464-74, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26997485

RESUMO

A staggering diversity of endophytic fungi associate with healthy plants in nature, but it is usually unclear whether these represent stochastic encounters or provide host fitness benefits. Although most characterized species of the fungal genus Colletotrichum are destructive pathogens, we show here that C. tofieldiae (Ct) is an endemic endophyte in natural Arabidopsis thaliana populations in central Spain. Colonization by Ct initiates in roots but can also spread systemically into shoots. Ct transfers the macronutrient phosphorus to shoots, promotes plant growth, and increases fertility only under phosphorus-deficient conditions, a nutrient status that might have facilitated the transition from pathogenic to beneficial lifestyles. The host's phosphate starvation response (PSR) system controls Ct root colonization and is needed for plant growth promotion (PGP). PGP also requires PEN2-dependent indole glucosinolate metabolism, a component of innate immune responses, indicating a functional link between innate immunity and the PSR system during beneficial interactions with Ct.


Assuntos
Arabidopsis/microbiologia , Colletotrichum/isolamento & purificação , Fosfatos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Colletotrichum/fisiologia , Endófitos , Proteínas de Transporte de Fosfato/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Espanha , Simbiose
14.
BMC Genomics ; 16: 917, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26556056

RESUMO

BACKGROUND: The Avrk1 and Avra10 avirulence (AVR) genes encode effectors that increase the pathogenicity of the fungus Blumeria graminis f.sp. hordei (Bgh), the powdery mildew pathogen, in susceptible barley plants. In resistant barley, MLK1 and MLA10 resistance proteins recognize the presence of AVRK1 and AVRA10, eliciting the hypersensitive response typical of gene for gene interactions. Avrk1 and Avra10 have more than 1350 homologues in Bgh genome, forming the EKA (Effectors homologous to Avr k 1 and Avr a 10) gene family. RESULTS: We tested the hypothesis that the EKA family originated from degenerate copies of Class I LINE retrotransposons by analysing the EKA family in the genome of Bgh isolate DH14 with bioinformatic tools specially developed for the analysis of Transposable Elements (TE) in genomes. The Class I LINE retrotransposon copies homologous to Avrk1 and Avra10 represent 6.5 % of the Bgh annotated genome and, among them, we identified 293 AVR/effector candidate genes. We also experimentally identified peptides that indicated the translation of several predicted proteins from EKA family members, which had higher relative abundance in haustoria than in hyphae. CONCLUSIONS: Our analyses indicate that Avrk1 and Avra10 have evolved from part of the ORF1 gene of Class I LINE retrotransposons. The co-option of Avra10 and Avrk1 as effectors from truncated copies of retrotransposons explains the huge number of homologues in Bgh genome that could act as dynamic reservoirs from which new effector genes may evolve. These data provide further evidence for recruitment of retrotransposons in the evolution of new biological functions.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Hordeum/microbiologia , Elementos Nucleotídeos Longos e Dispersos , Família Multigênica , Doenças das Plantas/microbiologia , Ascomicetos/classificação , Ascomicetos/metabolismo , Biologia Computacional , Sequência Consenso , Genoma Fúngico , Fases de Leitura Aberta , Filogenia , Proteômica
15.
J Virol ; 85(10): 4974-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21367909

RESUMO

Transmission between hosts is required for the maintenance of parasites in the host population and determines their ultimate evolutionary success. The transmission ability of parasites conditions their evolution in two ways: on one side, it affects the genetic structure of founded populations in new hosts. On the other side, parasite traits that increase transmission efficiency will be selected for. Therefore, knowledge of the factors and parameters that determine transmission efficiency is critical to predict the evolution of parasites. For plant viruses, little is known about the parameters of contact transmission, a major way of transmission of important virus genera and species. Here, we analyze the factors determining the efficiency of contact transmission of Tobacco mosaic virus (TMV) that may affect virus evolution. As it has been reported for other modes of transmission, the rate of TMV transmission by contact depended on the contact opportunities between an infected and a noninfected host. However, TMV contact transmission differed from other modes of transmission, in that a positive correlation between the virus titer in the source leaf and the rate of transmission was not found within the range of our experimental conditions. Other factors associated with the nature of the source leaf, such as leaf age and the way in which it was infected, had an effect on the rate of transmission. Importantly, contact transmission resulted in severe bottlenecks, which did not depend on the host susceptibility to infection. Interestingly, the effective number of founders initiating the infection of a new host was highly similar to that reported for aphid-transmitted plant viruses, suggesting that this trait has evolved to an optimum value.


Assuntos
Evolução Biológica , Doenças das Plantas/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/patogenicidade , Genótipo , Folhas de Planta/virologia , RNA Viral/genética
16.
PLoS One ; 4(10): e7463, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19829700

RESUMO

Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota) are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVR(k1) powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVR(k1) gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1) the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2) the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Elementos Nucleotídeos Longos e Dispersos/genética , Plantas/microbiologia , Retroelementos/genética , Ascomicetos/fisiologia , Evolução Molecular , Fungos/genética , Fungos/metabolismo , Biblioteca Gênica , Genes Fúngicos , Genoma Fúngico , Modelos Genéticos , Filogenia , Doenças das Plantas/microbiologia , Virulência
17.
Mol Plant Pathol ; 9(3): 369-84, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18705877

RESUMO

The term virulence has a conflicting history among plant pathologists. Here we define virulence as the degree of damage caused to a host by parasite infection, assumed to be negatively correlated with host fitness, and pathogenicity the qualitative capacity of a parasite to infect and cause disease on a host. Selection may act on both virulence and pathogenicity, and their change in parasite populations can drive parasite evolution and host-parasite co-evolution. Extensive theoretical analyses of the factors that shape the evolution of pathogenicity and virulence have been reported in last three decades. Experimental work has not followed the path of theoretical analyses. Plant pathologists have shown greater interest in pathogenicity than in virulence, and our understanding of the molecular basis of pathogenicity has increased enormously. However, little is known regarding the molecular basis of virulence. It has been proposed that the mechanisms of recognition of parasites by hosts will have consequences for the evolution of pathogenicity, but much experimental work is still needed to test these hypotheses. Much theoretical work has been based on evidence from cellular plant pathogens. We review here the current experimental and observational evidence on which to test theoretical hypotheses or conjectures. We compare evidence from viruses and cellular pathogens, mostly fungi and oomycetes, which differ widely in genomic complexity and in parasitism. Data on the evolution of pathogenicity and virulence from viruses and fungi show important differences, and their comparison is necessary to establish the generality of hypotheses on pathogenicity and virulence evolution.


Assuntos
Evolução Molecular , Fungos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Animais , Fungos/fisiologia , Interações Hospedeiro-Patógeno , Vírus de Plantas/fisiologia , Plantas/microbiologia , Plantas/virologia , Virulência/genética
18.
PLoS One ; 1: e41, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17183670

RESUMO

The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens.


Assuntos
Interações Hospedeiro-Patógeno , Modelos Biológicos , Ecossistema , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Plantas/virologia , Espanha
19.
Plant Cell ; 18(9): 2402-14, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16905653

RESUMO

Powdery mildews, obligate biotrophic fungal parasites on a wide range of important crops, can be controlled by plant resistance (R) genes, but these are rapidly overcome by parasite mutants evading recognition. It is unknown how this rapid evolution occurs without apparent loss of parasite fitness. R proteins recognize avirulence (AVR) molecules from parasites in a gene-for-gene manner and trigger defense responses. We identify AVR(a10) and AVR(k1) of barley powdery mildew fungus, Blumeria graminis f sp hordei (Bgh), and show that they induce both cell death and inaccessibility when transiently expressed in Mla10 and Mlk1 barley (Hordeum vulgare) varieties, respectively. In contrast with other reported fungal AVR genes, AVR(a10) and AVR(k1) encode proteins that lack secretion signal peptides and enhance infection success on susceptible host plant cells. AVR(a10) and AVR(k1) belong to a large family with >30 paralogues in the genome of Bgh, and homologous sequences are present in other formae speciales of the fungus infecting other grasses. Our findings imply that the mildew fungus has a repertoire of AVR genes, which may function as effectors and contribute to parasite virulence. Multiple copies of related but distinct AVR effector paralogues might enable populations of Bgh to rapidly overcome host R genes while maintaining virulence.


Assuntos
Ascomicetos/patogenicidade , Proteínas Fúngicas/fisiologia , Hordeum/microbiologia , Fatores de Virulência/fisiologia , Sequência de Aminoácidos , Apoptose/fisiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Clonagem Molecular , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dosagem de Genes , Hordeum/genética , Imunidade Inata/genética , Modelos Biológicos , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Alinhamento de Sequência , Fatores de Virulência/química , Fatores de Virulência/genética
20.
Virology ; 332(1): 359-68, 2005 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-15661167

RESUMO

The role of recombination in the evolution of Cucumber mosaic virus (CMV) was analyzed in a collection of Spanish isolates from 1989 to 2002. Isolates were characterized by ribonuclease protection assay using six RNA probes, two for each of the three genomic RNAs, which allowed the identification of the analyzed regions as belonging to CMV isolates in subgroups IA, IB, and II. Most isolates belonged to subgroups IA (64%) and IB (12%), 5% were reassortants among subgroups IA, IB, or II, and 17% were recombinants between these groups. Recombinants at RNA3 were significantly more frequent than recombinants at RNAs 1 and 2. One IB-IA recombinant RNA3 was as frequent in central Spain as the IA RNA3. The genetic structure of the virus population suggested that reassortants and most recombinant genotypes were selected against and was consistent with a higher biological cost of reassortment than recombination. Data also suggest that recombinants that encode hybrid proteins are at a higher disadvantage than recombinants that exchange whole ORFs.


Assuntos
Cucumovirus/classificação , Vírus de Plantas/genética , RNA Viral/genética , Vírus Reordenados/classificação , Recombinação Genética , Cucumovirus/genética , Evolução Molecular , Fases de Leitura Aberta , Vírus Reordenados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...